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1 Introduction and Background

Recall that a subset K of L1(µ) is called uniformly integrable if given ε > 0 there is a δ > 0

so that sup {
∫
E |f |dµ : f ∈ K} < ε whenever µ(E) < δ. Alternatively K is bounded and

uniformly integrable if and only if given ε > 0 there is an N > 0 so that

sup

{∫
[ |f |>c ]

| f | dµ : f ∈ K
}

< ε whenever c ≥ N.

The classical theorem of Dunford and Pettis [5, page 93], identifies the bounded, uniformly

integrable subsets of L1(µ) with the relatively weakly compact sets. Another characterization

of uniform integrability is given in a theorem of De La Vallée Poussin [16, pages 19-20], which

states that a subset K of L1(µ) is bounded and uniformly integrable if and only if there is an

N-function F so that sup{
∫

F (f)dµ : f ∈ K} < ∞. We refine and improve this theorem in

several directions. The theorem of De La Vallée Poussin does not, for instance, specify just

how well the function F can be chosen. It gives little additional information in case the set in

question is relatively norm compact in L1(µ). Finally it gives no information on the structure

of the set in the corresponding Banach space of F -integrable functions. More specifically

we establish the fact that a subset K of L1 is relatively compact if and only if there is an

N-function F ∈ ∆′ so that K is relatively compact in L∗
F (Theorem 2.2). Furthermore we

prove that a subset K of L1 is relatively weakly compact if and only if there is an N-function

F ∈ ∆′ so that K is relatively weakly compact in L∗
F (Theorem 2.5). In establishing this

last result, a weak compactness criterion for Orlicz spaces was used (Theorem 2.3). The

technique employed to prove this criterion was mainly averaging. Thus the natural question

of Orlicz spaces and their relationship to Banach-Saks types of properties arises.

Recall that a Banach space X has the Banach-Saks (weak Banach-Saks) property if every

bounded (weakly null) sequence in X has a subsequence, each subsequence of which, has

norm convergent arithmetic means. Subsequently we show that a large class of non-reflexive
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Orlicz spaces has the weak Banach-Saks property, by establishing a result for these spaces,

very similar to the Dunford-Pettis Theorem for L1. Specifically we show that if F ∈ ∆2

and its complement G satisfies limt→∞
G(ct)
G(t)

= ∞ for some c > 0, then any weakly null

sequence in L∗
F has equi-absolutely continuous norms (Theorem 2.8). As a corollary to this

theorem we have that if F is as above then a bounded set in L∗
F is relatively weakly compact

if and only if it has equi-absolutely continuous norms (Corollary 2.9). Furthermore, under

the same hypothesis L∗
F has the weak Banach-Saks property (Corollary 2.10). These results

complement the ones of T. Ando in [2]. We proceed to give an application in convex function

theory by answering negatively the following question posed in [12, page 30]: Given an N-

function F ∈ ∆′, is it possible to find an N-function H equivalent to F so that H satisfies

the ∆′ condition, for all real x, y ?

1.1 Some facts about N-Functions

Here we will summarize the necessary facts about a special class of convex functions called

N-functions. For a detailed account of these facts, the reader could consult the first chapter

in [12].

Definition 1.1 Let p : [0,∞) → [0,∞) be a right continuous, monotone increasing function

with

1. p(0) = 0;

2. limt→∞ p(t) = ∞;

3. p(t) > 0 whenever t > 0;

then the function defined by

F (x) =
∫ |x|

0
p(t)dt
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is called an N-function.

The following proposition gives an alternative view of N-functions.

Proposition 1.1 The function F is an N-function if and only if F is continuous, even and

convex with

1. limx→0
F (x)

x
= 0;

2. limx→∞
F (x)

x
= ∞;

3. F (x) > 0 if x > 0.

Definition 1.2 For an N-function F define

G(x) = sup{t|x| − F (t) : t ≥ 0} .

Then G is an N-function and it is called the complement of F .

Observe that F is the complement of its complement G.

Theorem 1.2 (Young’s Inequality) If F and G are two mutually complementary N-functions

then

xy ≤ F (x) + G(y) ∀x, y ∈ IR .

Proposition 1.3 The composition of two N-functions is an N-function. Conversely every

N-function can be written as a composition of two other N-functions.

The following material deals with the comparative growth of N-functions.

Definition 1.3 For N-functions F1, F2 we write F1 ≺ F2 if there is a K > 0 so that F1(x) ≤

F2(Kx) for large values of x. If F1 ≺ F2 and F2 ≺ F1 then we say that F1 and F2 are

equivalent.

4



Proposition 1.4 If F1 ≺ F2 then G2 ≺ G1, where Gi is the complement of Fi. In particular

if F1(x) ≤ F2(x) for large values of x then G2(x) ≤ G1(x) for large values of x.

Definition 1.4 A convex function Q is called the principal part of an N-function F , if

F (x) = Q(x) for large x.

Proposition 1.5 If Q is convex with lim
x→∞

Q(x)

x
= ∞ then Q is the principal part of some

N-function.

Definition 1.5 An N-function F is said to satisfy the ∆2 condition (F ∈ ∆2) if

lim supx→∞
F (2x)
F (x)

< ∞. That is, there is a K > 0 so that F (2x) ≤ KF (x) for large values of

x.

Definition 1.6 An N-Function F is said to satisfy the ∆′ condition (F ∈ ∆′) if there is a

K > 0 so that F (xy) ≤ KF (x)F (y) for large values of x and y.

Definition 1.7 An N-function F is said to satisfy the ∆3 condition (F ∈ ∆3) if there is a

K > 0 so that xF (x) ≤ F (Kx) for large values of x.

Definition 1.8 An N-function F is said to satisfy the ∆2 condition (F ∈ ∆2) if there is a

K > 0 so that (F (x))2 ≤ F (Kx) for large values of x.

Theorem 1.6 Let F be an N-function and let G be its complement; then the following hold.

• If F ∈ ∆′ then F ∈ ∆2.

• If F ∈ ∆3 then its complement G ∈ ∆2.

• If F ∈ ∆2 then its complement G ∈ ∆′.

• If F ∈ ∆2 then there is a p > 1 so that if H(x) = |x|p then F ≺ H.

Finally the classes ∆′, ∆2, ∆3 and ∆2 are preserved under equivalence of N-functions.
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The following proposition plays an important role for the results that follow.

Proposition 1.7 Given any N-function H there exists an N-function F ∈ ∆′ so that

F (F (x)) ≤ H(x) for large values of x.

1.2 Some facts about Orlicz Spaces

In this section we summarize the necessary definitions and results about Orlicz spaces. A

detailed account can be found in chapter two of [12]. Throughout this paper µ is assumed

to be a finite measure.

Definition 1.9 For an N-function F and a measurable f define

F(f) =
∫

F (f)dµ.

Let LF = {f measurable : F(f) < ∞}. If G denotes the complement of F let

L∗
F = {f measurable : |

∫
fgdµ| < ∞ ∀g ∈ LG} .

The collection L∗
F is then a linear space. For f ∈ L∗

F define

‖f‖F = sup{|
∫

fgdµ| : G(g) ≤ 1} .

Then (L∗
F , ‖ · ‖F ) is a Banach space, called an Orlicz space. Moreover, letting ‖ · ‖(F ) be the

Minkowski functional associated with the convex set {f ∈ L∗
F : F(f) ≤ 1}, we have that ‖·‖(F )

is an equivalent norm on L∗
F , called the Luxemburg norm. Indeed, ‖f‖(F ) ≤ ‖f‖F ≤ 2‖f‖(F ),

for all f ∈ L∗
F .

The following theorem establishes the fact that an Orlicz space is a dual space.

Theorem 1.8 Let F be an N-function and let EF be the closure of the bounded functions in

L∗
F . Then the conjugate space of (EF , ‖ · ‖(F )) is (L∗

G, ‖ · ‖G), where G is the complement of

F .
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Theorem 1.9 Let F be an N-function and G be its complement. Then the following state-

ments are equivalent:

1. L∗
F = EF .

2. L∗
F = LF .

3. The dual of (EF , ‖ · ‖(F ) is (L∗
G, ‖ · ‖G).

4. F ∈ ∆2.

Theorem 1.10 (Hölder’s Inequality) For f ∈ L∗
F and g ∈ L∗

G we have

∫
|fg|dµ ≤ ‖f‖F · ‖g‖(G) .

Theorem 1.11 If f ∈ L∗
F then

‖f‖F = inf
{

1

k
(1 + F(kf) : k > 0

}
.

It follows then that f ∈ L∗
F if and only if there is c > 0 so that F(cf) < ∞.

Proposition 1.12 If ‖f‖F ≤ 1 then f ∈ LF and F(f) ≤ ‖f‖F .

Comparison of N-functions, gives rise to the following result concerning their corresponding

Orlicz spaces.

Proposition 1.13 If F1 ≺ F2 then L∗
F2
⊂ L∗

F1
and the inclusion mapping is continuous.

Definition 1.10 We say that a collection K ⊂ L∗
F has equi-absolutely continuous norms if

∀ ε > 0 ∃ δ > 0 so that sup{‖χEf‖F : f ∈ K} < ε whenever µ(E) < δ.

For f ∈ L∗
F we say that f has absolutely continuous norm if {f} has equi-absolutely contin-

uous norms.
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The following two results deal with the equi-absolute continuity of the norms.

Theorem 1.14 A function f ∈ L∗
F has absolutely continuous norm if and only if f ∈ EF .

Theorem 1.15 If K ⊂ L∗
F , K has equi-absolutely continuous norms and K is relatively

compact in the topology of convergence in measure, then K is relatively (norm) compact in

L∗
F .

2 The Main results

2.1 De La Vallée Poussin’s Theorem revisited

Lemma 2.1 If F ∈ ∆2 and K ⊂ L∗
F then the following statements are equivalent:

I) The set K has equi-absolutely continuous norms.

II)The collection {F (f) : f ∈ K} is uniformly integrable in L1.

Proof : The implication “(I) ⇒ (II)” follows directly from the fact that

∫
E

F (f)dµ =
∫

F (χEf)dµ = F(χEf) ≤ ‖χEf‖F

whenever ‖χEf‖F ≤ 1.

Next suppose {F (f) : f ∈ K} is uniformly integrable. Let ε > 0 and choose n ∈ IN so

that 1
2n−1 < ε. Since F ∈ ∆2, there are K > 0, c > 0 so that F (2nx) ≤ KF (x) for x ≥ c.

Choose 0 < δ < 1
2F (c)

so that

sup
{∫

E
F (f)dµ : f ∈ K

}
<

1

2K
whenever µ(E) < δ.

Then for µ(E) < δ, f ∈ K we have

∫
E

F (2nf)dµ ≤
∫

E
F (c)dµ +

∫
E∩[ |f |≥c ]

F (2nf)dµ

<
1

2
+ K

∫
E∩[ |f |≥c ]

F (f)dµ < 1.
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Thus ‖2nfχE‖F ≤
∫

F (2nfχE)dµ + 1 < 2. So ‖fχE‖F < 1
2n−1 < ε.

From this lemma we obtain the following characterization of norm compact subsets of L1.

Theorem 2.2 A subset K of L1(µ) is relatively compact if and only if there is an N-function

F ∈ ∆′ so that K is relatively compact in L∗
F .

Proof : Since the inclusion map L∗
F ↪→ L1 is continuous, sufficiency follows.

Suppose K is relatively compact in L1. Then K is also relatively weakly compact in

L1 and so by the theorem of De La Vallée Poussin there is an N -function H so that

sup {
∫

H(f)dµ : f ∈ K} < ∞. Choose now an N -function F ∈ ∆′ with F (F (x)) ≤ H(x)

for large values of x. Thus sup {
∫

F (F (f)) dµ | f ∈ K} < ∞ and by De La Vallée Poussin’s

theorem again, we have that {F (f) | f ∈ K} is uniformly integrable in L1. So by Lemma

(2.1) K has equi-absolutely continuous norms in L∗
F . Since K is relatively compact in L1, it

is also relatively compact in the topology of convergence in measure. Hence K is relatively

compact in L∗
F .

The following result deals with relative weak compactness in L∗
F . We begin by mentioning

a remarkable theorem of J. Komlós [11]: If (fn) is bounded in L1 then there is a subsequence

(fnk
) of (fn) and a function f ∈ L1 so that each subsequence of (fnk

) has arithmetic means

µ-a.e. convergent to f .

Theorem 2.3 Let K ⊂ L∗
F . If K has equi-absolutely continuous norms and it is norm

bounded, then K is a Banach-Saks set in L∗
F . In particular K is relatively weakly compact in

L∗
F .

Proof : Since K has equi-absolutely continuous norms, K ⊂ EF . Let (fn) be a sequence in

K. Since (fn) is bounded in L∗
F -norm, it is also bounded in L1-norm. Hence by Komlós’s
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theorem, there is a subsequence (fnk
) of (fn) and a function f ∈ L1 so that any subsequence

of (fnk
) has µ−a.e. convergent arithmetic means to f . Let G denote the complement of F .

Note that for any measurable E and any g ∈ L∗
G with ‖g‖(G) ≤ 1 we have

|
∫

gχEf dµ| ≤
∫
|gχEf |dµ

≤ lim inf
n

∫
|gχE

1

n

n∑
k=1

fnk
|dµ

≤ sup
n

1

n

n∑
k=1

∫
|gχEfnk

|dµ

≤ sup
n

1

n

n∑
k=1

‖g‖(G) · ‖χEfnk
‖F

≤ sup{‖χEh‖F : h ∈ K}.

Thus ‖χEf‖F ≤ sup{|
∫

gχEfdµ| : ‖g‖(G) ≤ 1} ≤ sup{‖χEh‖F : h ∈ K}. So f ∈ L∗
F

and f has absolutely continuous norm. Let (hk) be any subsequence of (fnk
) and let an =

1
n

∑n
k=1 hk.

We now claim that an → f in L∗
F−norm. Since the inclusion map L∗

G ↪→ L1 is continuous,

there is a K > 0 so that ‖g‖1 ≤ K‖g‖(G) for all g ∈ L∗
G. Fix ε > 0 and choose δ > 0 so that

sup{‖χAh‖F : h ∈ K} < ε
3

whenever µ(A) < δ.

By Egorov’s theorem, there is a measurable set E with µ(Ω \ E) < δ so that an → f

uniformly on E. Choose N ∈ IN so that ‖χE(an − f)‖∞ < ε
3K

whenever n ≥ N . Then for

any g ∈ L∗
G with ‖g‖(G) ≤ 1 and n ≥ N we have

|
∫

g(an − f)dµ| ≤
∫
|g| · |an − f |dµ

=
∫

E
|g| · |an − f |dµ +

∫
Ω\E

|g| · |an − f |dµ

≤ ‖ g ‖1 · ‖ χE(an − f) ‖∞ + ‖ g ‖(G) · ‖ χΩ\E(an − f) ‖F

≤ K‖g‖(G)
ε

3K
+ ‖g‖(G)(‖anχΩ\E‖F + ‖fχΩ\E‖F )

<
ε

3
+ ‖

(
1

n

n∑
k=1

hk

)
χΩ\E‖F +

ε

3
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≤ 2ε

3
+

1

n

n∑
k=1

‖hkχΩ\E‖

<
2ε

3
+

ε

3
= ε.

So the claim is established.

Thus K is a Banach-Saks set in L∗
F . It also follows that fnk

→ f weakly in L∗
F and so K

is relatively weakly compact in L∗
F thanks to the Eberlein-Smulian theorem.

A. Grothendieck has shown that if 1 ≤ p < ∞ and X is a closed subspace of Lp(µ)

contained in L∞(µ), then X is finite dimensional (see [7] and [18, ch. 5]). We generalize this

result as follows.

Theorem 2.4 Suppose that X ⊂ L∞(µ) and suppose that X is a closed subspace of an

Orlicz space L∗
F . Then X is finite dimensional.

Proof : Let i1 : X ↪→ L∞(µ) and i2 : L∞(µ) ↪→ L∗
F be the natural inclusion maps, with

X having the topology inherited from L∗
F . Let (fn) be a sequence in X and assume that

‖ fn − f ‖F → 0 for some f ∈ X . Also assume that ‖ fn − g ‖∞→ 0 for some g ∈ L∞ . The

first assumption yields a subsequence (fnk
) of (fn) with fnk

→ f µ − a.e. . Since fn → g

uniformly µ − a.e. we have that f = g µ − a.e. . Thus by the closed graph theorem i1 is

continuous.

Now by Theorem (2.3) i2 is weakly compact and as L∞(µ) has the Dunford-Pettis prop-

erty, i2 is completely continuous. Hence i2 ◦ i1 is weakly compact and completely continuous.

But i2 ◦ i1 is the identity on X. Now it is not hard to see that the identity on X is compact

and hence X is finite dimensional.

We now prove the following stronger version of De La Vallée Poussin’s theorem.

Theorem 2.5 A set K is relatively weakly compact in L1 if and only if there is F ∈ ∆′ so
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that K is relatively weakly compact in L∗
F .

Proof : Since the inclusion map L∗
F ↪→ L1 is continuous and thus weak-to-weak continous,

sufficiency follows. So suppose that K is relatively weakly compact in L1. By De La Vallée

Poussin’s theorem, there is an N -function H with sup{
∫

H(f)dµ : f ∈ K} < ∞. Let F ∈ ∆′

with F (F (x)) ≤ H(x) for large x. So sup{
∫

F (F (f)) dµ : f ∈ K} < ∞, and by De La Vallée

Poussin’s theorem once more, we have that {F (f) : f ∈ K} is relatively weakly compact

in L1. Hence by Lemma (2.1), K has equi-absolutely continuous norms in L∗
F . Since K is

obviously bounded in L∗
F , we then have that K is relatively weakly compact in L∗

F , thanks

to Theorem (2.3).

Remark: If K ⊂ L1 and if there is an N -function F with its complementary G ∈ ∆2 so

that sup{
∫

F (f)dµ : f ∈ K} < ∞ then K is a bounded subset of Lp for some p > 1.

Indeed, if G ∈ ∆2 then there is q > 1 so that Lq ⊂ L∗
G. Let T : Lq → L∗

G denote the

natural inclusion map. Then if 1
p
+ 1

q
= 1 the adjoint operator T ∗ : L∗

F → Lp is also a natural

inclusion map. Since T is continuous so is T ∗. Hence K bounded in L∗
F , implies that K is

also bounded in Lp.

2.2 Orlicz Spaces and the weak Banach-Saks property

In this section we deal with a special class of non-reflexive Orlicz spaces, namely those spaces

whose generating N-function F satisfies ∆2 and the function G complementary to F satisfies

limt→∞
G(ct)
G(t)

= ∞ for some c > 0. In particular we will show that these spaces satisfy the

weak Banach-Saks property. This class of spaces has been examined by D. Leung [13]. At

this point we should mention that V. A. Akimovich has shown in [1] that every reflexive

Orlicz space over a probability is isomorphic to a uniformly convex Orlicz space. Combining
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this result with Kakutani’s result in [10] that states that uniformly convex spaces have the

Banach-Saks property, one can immediately conclude that reflexive Orlicz spaces have the

Banach-Saks property.

Lemma 2.6 Let K ⊂ L∗
F where F ∈ ∆2. Suppose that K fails to have equi-absolutely

continuous norms. Then there is an ε0 > 0, a sequence (fn) ⊂ K and a sequence (En) of

pairwise disjoint measurable sets, so that ‖ χEnfn ‖F > ε0 for all positive integers n.

Proof : Since K does not have equi-absolutely continuous norms, there is an η0 > 0 and

sequences (kn) ⊂ K, (An) ⊂ Σ, with µ(An) < 1
2n , so that ‖ χAnkn ‖F > η0 for all positive

integers n. For each n let Bn =
⋃∞

j=n Aj. Then Bn ⊃ Bn+1. Furthermore

µ(Bn) = µ(
∞⋃

j=n

Aj) ≤
∞∑

j=n

µ(Aj) ≤
∞∑

j=n

1

2j
→ 0

as n →∞, with ‖ χBnkn ‖F ≥ ‖ χAnkn ‖F > η0 for all positive integers n. Since F ∈ ∆2 we

have that each f ∈ L∗
F has absolutely continuous norm. So if n1 = 1 then there is n2 > n1

so that ‖ χBn1\Bn2
kn1 ‖F > η0

2
(After all µ(Bn) ↘ 0 ). Let E1 = Bn1 \ Bn2 and let f1 = kn1 .

Now choose n3 > n2 so that ‖ χBn2\Bn3
kn2 ‖F > η0

2
. Let E2 = Bn2 \ Bn3 and let f2 = kn2 .

Continue on. The result is now established if we take ε0 = η0

2
.

We next present a “Rosenthal’s Lemma” type of result. (cf. [5, page 82].)

Lemma 2.7 Let X be a Banach space. Suppose that (xn) ⊂ X is weakly null and (x∗n) ⊂ X∗

is weak∗ null. Then for each ε > 0 there is a subsequence (nk) of the positive integers, so

that, for each positive integer k we have

∑
j 6=k

|< x∗nj
, xnk

>|< ε .

Proof : Let ε > 0. Let n1 = 1. Since x∗n → 0 weak∗ there is an infinite subset A1 of the

positive integers so that
∑

j∈A1
|< x∗j , xn1 >| < ε

2
. Since xn → 0 weakly and since A1 is

infinite, we can find n2 > n1 with n2 ∈ A1, so that |< x∗n1
, xn2 >|< ε

2
. Similarly there is an
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infinite subset A2 of A1 so that
∑

j∈A2
|< x∗j , xn2 >|< ε

2
. Again choose n3 > n2 with n3 ∈ A2

so that |< x∗n1
, xn3 >| < ε

4
and |< x∗n2

, xn3 >| < ε
4

. There is an infinite subset A3 of A2 so

that
∑

j∈A3
|< x∗j , xn3 >| < ε

2
. Choose n4 > n3 with n4 ∈ A3 so that |< x∗ni

, xn4 >| < ε
6

for

i = 1 . . . 3. Continue inductively to construct a sequence of infinite subsets of the positive

integers, A1 ⊃ A2 · · · ⊃ Ak ⊃ · · · and a sequence n1 < n2 < · · · of positive integers with

(i) nk+1 ∈ Ak for all k.

(ii)
∑

j∈Ak

|< x∗j , xnk+1
>|< ε

2
for all k.

(iii) |< x∗nj
, xnk+1

>|< ε

2k
for all k and for j = 1, 2, . . . , k.

Now for fixed positive integer k we have

∑
j 6=k

|< x∗nj
, xnk

>| =
k−1∑
j=1

|< x∗nj
, xnk

>| +
∞∑

j=k+1

|< x∗nj
, xnk

>|

<
ε

2(k − 1)
(k − 1) +

∑
j∈Ak

|< x∗nj
, xnk

>|

<
ε

2
+

ε

2
= ε.

And so we are done.

Now we are ready for the main result of this section.

Theorem 2.8 Suppose that F ∈ ∆2 and that its complement G satisfies

lim
t→∞

G(ct)

G(t)
= ∞ for some c > 0.

Then any weakly null sequence in L∗
F has equi-absolutely continuous norms.

Proof : Suppose not. Then there is a weakly null sequence (fn) ⊂ L∗
F that fails to have equi-

absolutely continuous norms. Using Lemma (2.6) we may assume that there is an ε0 > 0

and a sequence (En) of pairwise disjoint measurable sets so that ‖ χEnfn ‖F > ε0 for all

positive integers n. Now choose a sequence (gn) ⊂ LG so that each gn is supported on En
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with
∫

G(gn) dµ ≤ 1 and so that |
∫

gnfndµ |> ε0 . For a fixed f ∈ L∗
F Hölder’s Inequality

yields

|
∫

fgndµ |= |
∫

χEnfgndµ | ≤ ‖ χEnf ‖F · ‖ gn ‖G .

But since (En) are pairwise disjoint and µ is finite we have that µ(En) → 0 . Furthermore

since F ∈ ∆2 and f ∈ L∗
F , f has absolutely continuous norm. Thus ‖ χEnf ‖F → 0 . As

(gn) is norm bounded, we can conclude that ‖ χEnf ‖F · ‖ gn ‖G → 0 and so
∫

fgndµ → 0 .

Hence (gn) is weak∗ null. By Lemma (2.7) there is a subsequence (nk) of the positive integers

so that for each k we have
∑

j 6=k |
∫

gnj
fnk

dµ |< ε0

2
.

We now claim that
∫

G(gn

c
)dµ → 0 . Fix ε > 0. Since limt→∞

G(ct)
G(t)

= ∞ then

limt→∞
G(t/c)
G(t)

= 0 . Choose t0 > 0 so that G(t/c)
G(t)

< ε
2

whenever t ≥ t0 . Since µ(En) → 0,

there is a positive integer N so that µ(En) < ε
2G(t0/c)

whenever n ≥ N . Hence if n ≥ N we

have

∫
G(gn/c)dµ =

∫
[ |gn|<t0 ]

G(gn/c)dµ +
∫
[ |gn|≥t0 ]

G(gn/c)dµ

≤ G(t0/c)µ(En) +
∫ ε

2
G(gn)dµ

<
ε

2
+

ε

2
= ε .

So the claim is established.

Now choose a subsequence (nkm) of (nk) so that

∞∑
m=1

∫
G(

gnkm

c
)dµ < ∞ .

Let g =
∑∞

m=1 gnkm
. Then g is well defined and g ∈ L∗

G, since
∫

G(g/c)dµ < ∞ . Since (fn)

is weakly null, we must have
∫

gfnkm
dµ → 0 as m →∞ . But for each positive integer m

we have

|
∫

gfnkm
dµ | = |

∫
(
∞∑

j=1

gnkj
)fnkm

dµ |
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≥ |
∫

gnkm
fnkm

dµ | −
∑
j 6=m

|
∫

gnkj
fnkm

dµ |

≥ |
∫

gnkm
fnkm

dµ | −
∑

j 6=km

|
∫

gnj
fnkm

dµ |

> ε0 −
ε0

2
=

ε0

2
,

which is a contradiction.

As a corollary to the theorem above, we get the following result that resembles the

Dunford-Pettis theorem for L1.

Corollary 2.9 Let F ∈ ∆2 and suppose that its complement G satisfies

lim
t→∞

G(ct)

G(t)
= ∞ for some c > 0 .

Then a bounded set K ⊂ L∗
F is relatively weakly compact if and only if K has equi-absolutely

continuous norms.

Proof : Suppose that K ⊂ L∗
F is relatively weakly compact. If K fails to have equi-absolutely

continuous norms then there is an ε0 > 0, a sequence (fn) ⊂ K and a sequence (En) of

measurable sets with µ(En) → 0 so that ‖ χEnfn ‖F > ε0, for each positive integer n. By

the Eberlein-Smulian theorem, there is an f ∈ L∗
F and a subsequence (fnk

) of (fn) so that

fnk
→ f weakly in L∗

F . So by Theorem (2.8), (fnk
− f) has equi-absolutely continuous

norms. Thus ‖ χEnk
(fnk

− f) ‖F → 0 as k →∞. As F ∈ ∆2 and f ∈ L∗
F , f has absolutely

continuous norm. Hence ‖ χEnk
f ‖F → 0 as k →∞ . But

ε0 <‖ χEnk
fnk

‖F ≤ ‖ χEnk
f ‖F + ‖ χEnk

(fnk
− f) ‖F

which is a contradiction.

The converse is just Theorem (2.3).

Corollary 2.10 Under the hypothesis of Corollary (2.9), L∗
F has the weak Banach-Saks

property.
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Proof : It follows directly from Corollary (2.9) and Theorem (2.3).

Recall that an N-function G satisfies the ∆3 condition if there is c > 0 so that tG(t) ≤

G(ct) for large values of t. If G ∈ ∆3 then its complement F ∈ ∆2 [12, pages 29–30].

Furthermore it is clear that limt→∞
G(ct)
G(t)

= ∞. Also note that if G ∈ ∆2 then G ∈ ∆3 .

In [12, page 30] the following question is posed: Given an N-function F ∈ ∆′ is it possible

to find an N-function H, equivalent to F so that for some K > 0

H(xy) ≤ K ·H(x) ·H(y) ∀ x, y ∈ IR ?

The following theorem answers this question in the negative.

Theorem 2.11 Suppose that G ∈ ∆2 and let F denote the complement of G. Then there is

no N-function H equivalent to F which satisfies the following condition:

There is a K > 0 so that H(t1 · t2) ≤ K ·H(t1) ·H(t2) for all real t1 and t2.

Proof : Suppose that such an H existed. Let µ denote Lebesgue measure on the interval

[0, 1]. Since µ is non-atomic, we can find a sequence (En) of pairwise disjoint measurable sets,

each of which has positive measure. For each positive integer n, let hn = H−1( 1
µ(En)

)χEn .

Then hn ∈ L∗
H with

∫
H(hn)dµ = 1 for all positive integers n. It follows from Lemma (2.1)

that no subsequence of (hn) has equi-absolutely continuous norms.

We now claim that (hn) is weakly null. Let (hnk
) be any subsequence of (hn). Then for

any positive integer N we have

∫
H(

1

N

N∑
k=1

hnk
)dµ ≤ K ·H(

1

N
) ·
∫

H(
N∑

k=1

hnk
)dµ

= K ·H(
1

N
) ·

N∑
k=1

∫
H(hnk

)dµ

= K ·H(
1

N
) ·

N∑
k=1

1

µ(Enk
)
µ(Enk

)

= K ·H(
1

N
) ·N .
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Since H is an N-function, limt→0
H(t)

t
= 0. Thus limN→∞ K ·H( 1

N
) ·N = 0 . But since H ∈ ∆′

then H ∈ ∆2 . So ‖ 1
N

∑N
k=1 hnk

‖H → 0 . To summarize, every subsequence of (hn) has norm

null arithmetic means and so (hn) is weakly null as we claimed. Now since F is equivalent

to H, there are constants λ1 > 0 and λ2 > 0 so that

λ1 ‖ f ‖F ≤ ‖ f ‖H ≤ λ2 ‖ f ‖F for all f ∈ L∗
H(= L∗

F ) .

By Theorem(2.8), (hn) has equi-absolutely continuous F-norms and thus, by the inequality

above, (hn) also has equi-absolutely continuous H-norms.

But this is clearly a contradiction.

Remark: The same result can be obtained from the work of T. Ando in [2]. Specifically

it follows directly from [2, Theorem 1], that given F ∈ ∆2, a subset K of L∗
F is relatively

weakly compact, if and only if

lim
t→0

(sup{F(tf)

t
: f ∈ K}) = 0

With this fact in hand, we can easily prove the following theorem.

Theorem 2.12 Let F be an N-function satisfying the ∆′ condition for all real x, y. That is

there is K > 0 so that F (xy) ≤ K · F (x) · F (y) for all x, y ∈ IR. Then L∗
F is reflexive.

Proof: Since F ∈ ∆′ then F ∈ ∆2. Furthermore

lim
t→0

(sup{F(tf)

t
: f ∈ BL∗F

}) = lim
t→0

(sup{
∫
Ω F (tf(ω))dµ(ω)

t
: f ∈ BL∗F

})

≤ lim
t→0

(sup{
∫
Ω K · F (t) · F (f(ω))dµ(ω)

t
: f ∈ BL∗F

})

= lim
t→0

K · F (t)

t
= 0 .

Thus BL∗F
is relatively weakly compact and so L∗

F is reflexive.
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Now it is easy to see that given any N-function F ∈ ∆′ so that its complement G /∈ ∆2,

then there is no N-function H equivalent to F so that, H satisfies ∆′ for all real x, y.
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